

# **Basic Terminology:**

| Terms                | Explanation                                                                                                                                                                   |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| System               | Part of the universe under investigation.                                                                                                                                     |
| Open System          | A system which can exchange both energy and matter with its surroundings.                                                                                                     |
| Closed System        | A system which permits passage of energy but not mass, across its boundary.                                                                                                   |
| Isolated system      | A system which can neither exchange energy nor matter with its surrounding.                                                                                                   |
| Surroundings         | Part of the universe other than system, which can interact with it.                                                                                                           |
| Boundary             | Anything which separates system from surrounding.                                                                                                                             |
| State variables      | The variables which are required to be defined in order to define state of any system <i>i.e.</i> pressure, volume, mass, temperature, surface area, etc.                     |
| State Functions      | Property of system which depend only on the state of the system<br>and not on the path.<br>Example: Pressure, volume, temperature, internal energy, enthalpy,<br>entropy etc. |
| Intensive properties | Properties of a system which do not depend on mass of the system <i>i.e.</i> temperature, pressure, density, concentration,                                                   |
| Extensive properties | Properties of a system which depend on mass of the system <i>i.e.</i> volume, energy, enthalpy, entropy etc.                                                                  |
| Process              | Path along which state of a system changes.                                                                                                                                   |
| Isothermal process   | Process which takes place at constant temperature                                                                                                                             |
| Isobaric process     | Process which takes place at constant pressure                                                                                                                                |
| Isochoric process    | Process which takes place at constant volume.                                                                                                                                 |
| Adiabatic process    | Process during which transfer of heat cannot take place between system and surrounding.                                                                                       |
| Cyclic process       | Process in which system comes back to its initial state after<br>undergoing series of changes.                                                                                |
| Reversible process   | Process during which the system always departs infinitesimally from the state of equilibrium <i>i.e.</i> its direction can be reversed at any moment.                         |



PdV

Irriversible Process

This type of process is fast and gets completed in a single step. This process cannot be reversed. All the natural processes are of this type

### Heat, energy and work:

Heat (Q):

- Energy is exchanged between system and surround in the form of heat when they are at different temperatures.
- Heat added to a system is given by a positive sign, whereas heat extracted from a system is given negative sign.
- It is an extensive property.
- It is not a state function.

#### **Energy:**

- It is the capacity for doing work.
- Energy is an extensive property.
- Unit : Joule.

#### Work (W):

- Work = Force × Displacement *i.e.* dW = Fdx
- Work done on the system is given by positive sigh while work done by the system is given negative sign.
- Mechanical Work or Pressure-Volume Work: work associated with change in volume of a system against an external pressure.
- Work done in reversible process: W=

 $W = -2.303 \text{ nRT} \log v_2/v_1 = -2.303 \text{ nRT} \log p_1/p_2$ 

Wok done in isothermal reversible contraction of an ideal gas:

- $?W = -2.303 \text{ nRT} \log v_2/v_1 = -2.303 \text{ nRT} \log p_1/p_2$
- Unit : Joule.

### Internal Energy (E or U):

- Sum of all the possible types of energy present in the system.
- $\Delta E$  = heat change for a reaction taking place at constant temperature and volume.
- ΔE is a state function.
- It is an extensive property.



Value of  $\Delta E$  is -ve for exothermic reactions while it is +ve for endothermic reactions.



### First Law of Thermodynamics:

Energy can neither be created nor destroyed although it can be converted from one form to another.Or

Energy of an isolated system is constant.

#### **Mathematical Expression**

Heat observed by the system = its internal energy + work done by the system. i.e. q = dE + w

For an infinitesimal process

dq = dE + dw

Where, q is the heat supplied to the system and w is the work done on the system.

For an ideal gas undergoing isothermal change  $\Delta E = 0$ .

```
so q= -w.
```

For an isolated system, dq=0 so, dE = - dw

#### Heat capacity:

Amount of heat required to rise temperature of the system by one degree.

C = q / dT

- **Specific heat capacity:** Heat required to raise the temperature of 1 g of a substance by one dgree. C<sub>s</sub> = Heat capacity / Mass in grams
- Molar heat capacity: Heat required to raise the temperature of 1 g of a substance by one dgree.



 $C_m$  = Heat capacity / Molar mass.

- Heat capacity of system at constant volume:  $C_v = (dE/dT)_v$
- Heat capacity of system at constant pressure:  $C_p = (dE/dT)_p$

## **Bomb Calorimeter:**

